Top Executives Want AI Enterprise Automation. Here’s Why Domain-Specific Solutions Are the Way to Go.

 

AI tools were envisioned to soak up the tedium in our days. With surprising accuracy and verisimilitude, AIs like ChatGPT are able to send emails, sort data, and automate repetitious tasks far more efficiently than people can. And this is a good thing, especially if it opens us up to spend more time with creative problem-solving and decision-making as business professionals. When taken at enterprise scale, AI enterprise automation could overhaul how companies function day to day. A recent enterprise automation study from the International Data Corporation found that AI enterprise automation is a top choice for companies looking to implement sustainability efforts; of the 800 global executives interviewed in the survey, 54% said they’re “already using enterprise automation technologies to help implement sustainability initiatives,” with an additional 24% saying they plan to deploy similar solutions over the next two years.

This is encouraging not only for the larger business climate stewardship community but for the AI enterprise automation space as well; companies are clearly eager for solutions that help create efficiencies in their operations and meeting their evolving KPIs. As AI enterprise automation further develops, what’s next in terms of functionality for that tech ecosystem, and should businesses seek solutions that are more tailor-made to their industry?

Trevor Francis, CEO and founder of global connectivity orchestration company 46 Labs, is carefully watching how AI business tools are developing in real time and gives his perspective on what’s next for AI enterprise automation and how business executives should be investing and deploying said solutions.

Trevor’s Thoughts

“What’s next for enterprise automation? I think that enterprise automation and AI will become synonymous, and I think that enterprises are going to follow kind of two separate paths with their application of AI. The first is a natural language model-based AI that’s leverages tooling like ChatGPT to replace human to human interaction.

The applications within the enterprise here are extraordinary. In the contact center space, in customer support, in document review, kind of anything that follows a natural language or dialogue-based flow apply this type of AI model.

The other is decision making-based AI, and this AI is more narrowly focused. It’s domain specific to a particular workload and it’s generally trained using best practices within that particular domain. So, the applications for enterprises here center around automation of IT workloads, security, connectivity management, network management, anything that requires an automated decision based upon best practices fit within this model.

Now, for enterprises to be successful in either model, they have to have kind of two separate things. First, they have to have a grasp of what the privacy considerations are for training these models. And the other is a kind of a clear understanding of which workloads you want to apply to which model.

If enterprises have a full grasp of these two things, they can be considerably more successful in kind of their launch of enterprise automation and AI in the future.”

Article written by Graham P. Johnson.

Follow us on social media for the latest updates in B2B!

Image

Latest

brand
The Art of Evolution: Leading a Founder-Driven Brand Into Its Next Chapter with Mary Beth Sheridan
February 19, 2026

For many retail brands, growth today isn’t just about innovation — it’s about keeping pace with customers whose expectations are evolving in real time, led by younger generations who expect brands to reflect their values and show up with cultural relevance. In fact, recent research from MG2 found that the overwhelming majority of Gen Z shoppers…

Read More
computer vision
Censis’ Final Check Uses Computer Vision to Eliminate Tray Errors Before They Reach the OR
February 19, 2026

Artificial intelligence used to live in strategy decks and conference keynotes—but now it’s showing up in a very different place: right on the assembly tables where SPD technicians build trays for the next case. And it’s arriving at a time when the pressure on sterile processing has never been higher. As surgical volumes climb and…

Read More
Scaling AI
QumulusAI Provides A Clear Roadmap for Scaling AI Platforms to Thousands of Users
February 18, 2026

Scaling AI platforms can raise questions about how to expand across locations and support higher user volumes. Growth often requires deployments in multiple data centers and regions. Mazda Marvasti, the CEO of Amberd, says having a clear path to scale is what excites him most about the company’s current direction. He notes that expanding…

Read More
managed service
Complex AI Software Should Be Delivered as a Managed Service
February 18, 2026

Artificial intelligence software is increasing in complexity. Delivery models typically include traditional licensing or a managed service approach. The structure used to deploy these systems can influence how they operate in production environments. The CEO of Amberd, Mazda Marvasti, believes platforms at this level should be delivered as a managed service rather than under…

Read More