Composite Use in the Aerospace Industry

Since the birth of aviation, creating enough lift to overcome the weight of the aircraft to achieve proper altitude has been an ongoing challenge. Year after year, designers have been compelled to find materials that were lighter, but with sufficient strength to withstand the high stresses created during takeoffs and landings, as well as turbulent air. Lighter metals, such as aluminum, changed the landscape of aviation dynamics in the early years of the 20h century. But today, aircraft designers are increasingly turning to composites to take the aerospace industry to the next level. Let’s take a look.

Composite Materials Give Aerospace a Lift

composite is just what it sounds like: combining two dissimilar materials with different physical and chemical properties to produce a unique material incorporating the strengths of both. The ideal composite will be sturdier, lighter, and more cost effective than the traditional materials typically used in a given application.

Fiberglass, one of the most common composite materials, was first used in aircraft design in the 1950s for the Boeing 707 passenger jet. In the 1960s, carbon fiber was incorporated into military aircraft and jet engines. As materials engineering grew more sophisticated in the following decades, composites continued to be employed in an increasing number of aircraft components. The Boeing 787 Dreamliner, for example, is made up of 50% composite materials, such as advanced carbon sandwich composites, carbon laminates, and carbon fiber-reinforced polymers.

Composite Materials Outperform Antiquated Metals

Composites allow the aerospace industry to reduce the weight of aircraft when compared with those made from traditional aluminum and steel parts, while retaining or even increasing performance. Composites offer strength and stiffness—major considerations for aerodynamic design. They also have increased temperature resistance and a low coefficient of thermal expansion, both important to aircraft construction.

Composites are used throughout aircraft, but chiefly in the fuselage and in the wing skin, flaps, rudders, and ailerons. In helicopters, they are used in the main and tail rotor blades. And in aerospace vehicles, they are used not only in the crafts themselves, but also in the payloads they carry, such as satellites, missiles, and rockets.

The Benefits of Composites are Clear

Composites offer a number of benefits when used in aerospace applications:

  • 20% to 50% reduction in component weight while providing higher strength
  • High impact resistance and damage tolerance
  • Increased thermal stability
  • Fatigue and corrosion resistance
  • Simplified structural component assembly

The Future is Bright for Composites in the Aerospace Industry

Based on the progress currently being made in composite construction and manufacturing techniques today, the use of composites in the aerospace industry is sure to intensify. Magnum Venus Products (MVP) is the premier manufacturer of composite application equipment for the aerospace industry. MVP has over 60 years of experience delivering superior customer service and the most innovative products, services, and solutions.

Learn more about how MVP is serving the aerospace industry by visiting http://www.mvpind.com/announcements/composites-in-aerospace/ today!

Follow us on social media for the latest updates in B2B!

Image

Latest

Mike Dermont Diversified talks AV and healthcare experience
AV’s Critical Role in the Future of Healthcare Experience
July 15, 2025

As healthcare organizations face growing pressure to improve healthcare experience, patient outcomes, streamline operations, and address chronic staffing shortages, audiovisual (AV) technologies are becoming essential tools in delivering high-quality care. From in-room monitoring to patient communication systems, the AV industry is stepping up to meet the evolving demands of a sector that touches every life….

Read More
Applied Digital
Workforce, Housing, and Growth: How Applied Digital Is Revitalizing a Rural Town Through AI Infrastructure
July 15, 2025

As AI infrastructure spreads beyond tech hubs and into America’s heartland, companies face a new imperative: not just to build facilities—but to build trust, local partnerships, and long-term value for the communities that host them. In Ellendale, North Dakota, Applied Digital’s Polaris Forge 1 campus has become a case study in what rural revitalization…

Read More
Sepsis
Challenges of Identifying and Reducing Sepsis Mortality – Episode 2
July 15, 2025

Michael Rothman explores the complexities of sepsis identification and management, highlighting the challenges posed by varying definitions and clinical pathways. He discusses the ineffectiveness of current sepsis screening protocols, which often yield high false-positive rates and fail to reduce mortality meaningfully. The episode concludes by questioning the focus on sepsis-specific initiatives and suggesting that more…

Read More
engineering community
The Future of the Engineering Community: Equity, AI, and Real Connection
July 15, 2025

The Engineer Who Builds Communities, Not Just Systems! Angelie Vincent has spent more than two decades in aerospace engineering, but her real legacy might be the communities she’s built along the way. Now an AI Integration Engineer at Boeing, Angelie joins Professional Quotient host Jason Winningham for a wide-ranging conversation on neurodivergent leadership, workplace…

Read More