Optimizing Medical Imaging at the Edge

January 4, 2022
Hilary Kennedy

 

More and more of today’s medical imaging devices, such as CT, ultrasound, and MRI scanners, rely on real-time AI inferencing at the edge to make critical medical decisions while patients are being treated. Intel’s Deepthi Karkada, a deep-learning software engineer, and Ryan Loney, Product Manager for OpenVINO spoke to Hilary Kennedy about recent trends in AI-based medical imaging and how Intel and its partners are helping identify and address the rapidly changing needs of this burgeoning industry.

“Real-time medical imaging at the edge is important because it enables healthcare providers to get results from scans, run inferences, and make decisions about medical care at the patient’s bedside,” says Looney. “Often these results need to be obtained and processed in two seconds or less.”

Computing at the edge is not without its issues, however. Three of the major hurdles Intel and its partners routinely face are: limited memory in low-power devices, binary size, and latency. “Every megabyte counts when you’re deploying on low-power medical devices with limited memory,” says Looney. “Analytics need to be run in as close to real-time as possible.”

“We know that AI and similar techniques are being adopted in the fields of medical imaging,” Karkada said. “These techniques include things like object detection and semantics segmentation. These techniques help radiologists quickly identify issues and result in many benefits. Many of our partners have been leveraging these advancements in these technologies.”

“Intel offers a portfolio of hardware solutions targeted for AI inferencing,” Karkada said. “This includes solutions like the Intel Xeon® processors, core processors, and FPGAs, that our partners have been able to leverage. On the software side, our OpenVINO Toolkit provides accelerated inferencing solutions. These also take advantage of the hardware features, so they’re tightly coupled and integrated.”

Learn more about AI and edge solutions for medical imaging, and other health and life sciences, by connecting with Deepthi Karkada and Ryan Loney on LinkedIn, or read more about Intel’s medical imaging solutions online.

Learn how to optimize a CT model using OpenVINO here: https://github.com/openvinotoolkit/openvino_notebooks/tree/main/notebooks/110-ct-segmentation-quantize

Hear some of our customer success stories here.

Subscribe to the “Health and Life Sciences at the Edge” channel on Apple Podcasts, Spotify, Google Podcasts, or Simplecast to hear more from the Intel Internet of Things Group.

Recent Episodes

Healthcare
View episode

Dr. Scott Sigman, M.D., host of The Ortho Show, highlights the impending technological advancements in healthcare, emphasizing how it will enhance patient care and revolutionize surgical procedures. Dr. Sigman mentions the integration of ChatGPT in the operating room through CaliberAI, an AI company aiming to guide surgical interventions. Furthermore, Dr. Sigman shares his experience with […]

Lifelong Impact
View episode

Blair Bundy, the Director of Player Health for the Milwaukee Brewers, recently shared his insights on the importance of nurturing lifelong athletes from a young age. He emphasized that the ultimate goal for children participating in sports is not just about winning games but about fostering physical and mental resilience. Such individuals lessen the strain […]

Data Innovation
View episode

    The relationship between socioeconomic backgrounds and health outcomes has been proven through years of study. Healthcare providers understand that those from lower socioeconomic brackets often face more health challenges. This is attributed to limited healthcare access, challenging living conditions, and elevated stress. How can data innovation help stakeholders solve these pressing issues? Brian […]