Businesses that Build Transparency into Their Data Governance Strategies Eliminate Challenges Down the Road

 

Local governments need robust data governance strategies to ensure effective and secure data management. The complexities of today’s data-driven decisions demand innovative solutions, and a new guide offers much-needed support.

The MetroLab Network recently unveiled its “Model Data Governance Policy & Practice Guide for Cities and Counties,” aiming to bolster data governance at the local government level. This 48-page guide, rooted in the efforts of the Data Governance Task Force, offers municipalities insights into effective data use, retention, and organization. Executive Director of MetroLab Network, Kate Burns, highlighted the guide’s role in enhancing data-driven decision-making while ensuring public protection. The guide’s website also features a resource library with over 120 references from local governments nationwide.

Lauren Maffeo, an Adjunct Lecturer at the Corcoran School of the Arts and Design at The George Washington University, advises companies to plan their data governance strategies carefully and thoughtfully to avoid future roadblocks.

Lauren’s Thoughts

“Startup leaders are worried that they don’t have enough resources to do data governance. But now that generative AI is here, like ChatGPT, you would design an architectural environment that promotes data transparency.

One of the significant challenges I see with corporations as they build out effective data governance is that building the data governance from scratch is arduous on its own. And when they think about the context of not only designing that data governance from scratch but retroactively applying it to all of the data in their organization that they collect, ingest, produce, all of that, it feels very overwhelming. And it feels especially overwhelming in this context of generative AI.

AI is nothing new and has gained steam in organizations for the last five to seven years. But now that generative AI is here, like ChatGPT, there’s a real push for organizations to use it without any strategy behind it. And more importantly, without a plan for how to govern that data and design things like transparency into their data strategy. I think that’s a big challenge, especially with large organizations.

And that’s an important distinction because sometimes I talk to startup leaders who worry they don’t have enough resources to do data governance. And in this way, they have an advantage because they can design data governance into their organization to produce more data that meets quality standards, is co-owned across the organization, and lives in a more transparent architecture environment.

That’s the biggest piece of advice that I would offer to any leader of any organizational size is to think of your data strategy and your data architecture not as things that produce transparency as a byproduct but as opportunities to design transparency into it.

So, you would design a data strategy that promotes transparency and an architectural environment that promotes data transparency, both for consumers and your colleagues. Because a big part of this work is creating data-literate organizations, that is how you create a data-driven organization. And so that’s my advice, is to think less about having transparency and quality be a byproduct of your data. Instead, think about how you can design these systems to be transparent and of sound quality from the start.”

Article by James Kent

Follow us on social media for the latest updates in B2B!

Image

Latest

Texas energy
Small Margins, Big Risks: How Fraud Hurts Texas Energy Retailers
January 6, 2026

Fraud has quietly become one of the most existential threats in Texas’s deregulated retail electricity market—because the business runs on razor-thin margins and delayed payment. Under the non-POR system overseen by the Electric Reliability Council of Texas (ERCOT), retail energy providers assume the full risk of nonpayment. With profit margins often measured in just a…

Read More
learning
From 30 to 1,500 Students: Scaling Mass Experiential Learning with How to Change the World
January 5, 2026

Higher education is at a crossroads. Institutions are being asked to do more with less—serve more students, prepare them for a rapidly changing, AI-shaped workforce, and prove the real-world value of a degree—all at the same time. Employers consistently note that while graduates are technically capable, many struggle to apply what they’ve learned to…

Read More
What the Future Looks Like if We Get It Right
What the Future Looks Like if We Get It Right
December 30, 2025

As the Patient Monitoring series concludes, the conversation shifts from today’s challenges to tomorrow’s possibilities. This final episode of the five-part Health and Life Sciences at the Edge series looks ahead to what healthcare could become if patient monitoring gets it right. Intel’s Kaeli Tully is joined by Sudha Yellapantula, Senior Researcher at Medical…

Read More
data center infrastructure
AI Is Forcing a Rethink of Data Center Infrastructure at Every Level
December 29, 2025

The data center industry is being redefined by AI’s demand for faster, denser, and more scalable infrastructure. According to McKinsey, average rack power densities have more than doubled in just two years. It went from approximately 8 kW to 17 kW, and is expected to hit 30 kW by 2027. Global data center power demand is projected…

Read More