Simulations Find Answers Blowing in the Wind

The Energy Exchange explores the complex and critical intersection of energy, money and technology. Experts will use their insights and forecasts to outline what energy is available to us, the costs associated with that energy production and its use, and the technological innovations changing the way we utilize Earth’s resources to power our way of life.

 

As energy demands shift from fossil fuels, the world will turn to other energy sources. One of those is wind energy. Energy Exchange Host David Hidinger came across Joachim Toftegaard Hansen’s work when he published a few papers on wind farms of the future.

On this episode of Energy Exchange, Hidinger talked with Hansen, a Fluid Mechanics Engineer at Aerotak and Master’s Student at the Technical University of Denmark, about his research and writing on wind farms.

Hansen’s undergrad thesis dissertation focused on wind turbines. He studied at Oxford Brookes University, where they have an advanced research computing facility central to his work. With a long-time interest in structural mechanics, he set out on understanding wind turbines. While on holiday back in Denmark, he started reaching out to wind turbine companies and asking about working on a project. They didn’t do projects with undergrad students, but he found some information on YouTube about an American professor.

He found CalTech Professor John Dabiri and his unique vertical-axis wind turbines. Inspired, he thought about ‘what if you ran a CFD (Computational Fluid Dynamics) test on these turbines?’ Dabiri had run a lot of tests, but Hansen understood the future of these turbines lay in CFD. He pitched the idea, and his thesis was approved.

“A numerical way to solve these famous Navier stokes equations,” Hansen said. These types of partial-differential equations can solve the most challenging problems in fluid dynamics. This is why the computers at Brookes were so central to Hansen’s work. He literally had to run thousands of mathematical simulations on supercomputers.

“If I had to do those [the simulations] on a normal computer, it would take about 40 years,” Hansen said. The results took time, but not as long.

Listen to learn more about the fascinating future of wind turbines and hear Hansen’s results.

Follow us on social media for the latest updates in B2B!

Twitter – @MarketScale
Facebook – facebook.com/marketscale
LinkedIn – linkedin.com/company/marketscale

 

Follow us on social media for the latest updates in B2B!

Image

Latest

data-driven tools
Leverage Data-Driven Tools and Local SEO for Maximum Search Engine Rankings
July 26, 2024

As businesses continue to navigate the digital landscape, data-driven tools are more crucial than ever for effective SEO strategies. Understanding and implementing the proper SEO practices can make a significant difference with evolving algorithms and competitive markets. Given that 75% of users never scroll past the first page of search results, this statistic underscores…

Read More
On-device AI
On-Device AI is Today’s Tech Innovation, Competition and Market Leadership Driver
July 26, 2024

On-device AI revolutionizes the tech landscape, making it a critical factor for industry dominance. This cutting-edge technology directly integrates advanced AI capabilities into devices, transforming consumer and enterprise applications. This shift stems from the need for improved performance, reduced latency, enhanced data privacy & security, and personalized user experiences. With advancements in neural processing…

Read More
modern supply chains
The Role of AI in Modern Supply Chains: Insights from Aaron Hatfield at Arvist
July 26, 2024

Artificial intelligence rapidly transforms modern supply chains, with companies like Arvist leading the charge. In a recent episode of Hammer Down, hosted by Mike Bush, Aaron Hatfield, the Head of Sales at Arvist, sheds light on AI’s practical applications and benefits in enhancing supply chain operations. Is AI in the supply chain a double-edged…

Read More
semiconductor manufacturing
Training New Semiconductor Manufacturing Professionals is Key to Meet Coming Domestic Manufacturing Demand
July 26, 2024

Over the past few years, the U.S. has made significant strides in semiconductor manufacturing, driven by substantial investments and strategic policies. With the CHIPS Act expected to triple domestic semiconductor manufacturing capacity by 2032, the need for a skilled workforce is more urgent than ever. This discussion explores the key question: What does the…

Read More